terça-feira, 17 de dezembro de 2013

Posição relativa entre duas retas no plano.




  • Paralelas


Considere duas retas distintas e paralelas r e s:





Temos que:

r ∕∕ s ↔ tg α1 = tg α2 ou mr = ms

Isso quer dizer que duas retas são paralelas se, e somente se, seus coeficientes angulares forem iguais.


Exemplo 1.

Verifique se as retas r: y = 3x – 2 e s: 6x – 2y + 5 = 0 são paralelas.

Solução: Precisamos determinar o coeficiente angular das retas r e s.

Vamos determinar o coeficiente angular da reta r:

Como a equação da reta r está na forma reduzida, fica fácil ver que mr = 3.

Agora vamos determinar o coeficiente angular da reta s.
6x – 2y + 5 = 0
2y = 6x + 5
y = 3x + 5/2

Daí, vemos que ms = 3

Como mr =ms =3, podemos afirmar que r // s.


Exemplo 2.

Para quais valores de k as retas 3x + 2y – 1 = 0 e kx – 3y + 1 = 0 são paralelas?

Solução: Para as duas retas serem paralelas, os seus coeficientes angulares devem ser iguais. Assim, vamos determinar o coeficiente angular das retas em questão.


s:3x+2y-1=0

2y= -3x+1

y= -3x/2 + 1/2

ms= -3/2


r: kx-3y+1 =0

-3x= -kx - 1

y= kx/3 + 1/3

mr = 1/3

Daí segue que:

ms=mr

-3/2 = k/3

k = -9/2



  • Concorrentes


Duas retas são concorrentes se, somente se, possuírem um ponto em comum, ou seja, a intersecção das duas retas é o ponto em comum.

Considerando a reta t e u e as suas respectivas equações gerais das retas, atx + bty + ct = 0 e aux + buy + cu = 0. Representando-as em um plano cartesiano, iremos perceber que são concorrentes, pois possui o ponto A em comum.





Exemplo: As equações gerais das duas retas r e s são respectivamente, x + 4y – 7 = 0 e 3x + y + 1 = 0. 


Determine o ponto P(x0, y0) comum às retas r e s.

Sabemos que o ponto de intersecção de duas retas concorrentes é a solução do sistema formado por elas. Assim, veja a resolução do sistema abaixo:

x + 4y – 7 = 0
3x + y + 1 = 0

x + 4y = 7     (-3)
3x + y = -1

-3x  –  12y   = -21
 3x   +   y      = -1
           -11y   = -22

y = 2

Substituindo o valor de y em qualquer uma das equações iremos obter o valor de x:

x + 4y = 7
x + 4 . 2 = 7
x + 8 = 7
x = 7 – 8
x = -1

Portanto, o ponto P(x0, y0) = (-1,2).

No início da explicação foi dito que as retas t: atx + bty + ct = 0 e u: aux + buy + cu = 0 são concorrentes. Para que seja verdadeira essa afirmação o sistema formado por elas deverá ser possível e determinado, essa verificação irá funcionar da seguinte forma:

atx + bty + ct = 0
aux + buy + cu = 0

atx + bty = - ct
aux + buy = - cu

E para que esse sistema seja possível e determinado, o seu determinante deverá ser diferente de zero.




Exemplo: Verifique se as retas 2x + y – 3 = 0 e 6x + 5y + 1 = 0 são concorrentes.

2x + y = 3
6x + 5y = -1





2 . 5 – (1 . 6) ≠ 0
10 – 6 ≠ 0
4 ≠ 0


  • Coincidentes






Duas retas são coincidentes se pertencem ao mesmo plano e possuem todos os pontos em comum.




  • Perpendiculares


Sabemos da Geometria Plana que duas retas são perpendiculares quando são concorrentes e formam entre si um ângulo reto (90º) . Sejam as retas r: y = mr x + nr e s: y = ms x + ns . Nestas condições podemos escrever a seguinte relação entre os seus coeficientes angulares:
ms = - 1 / mr ou m. ms = -1 .
Dizemos então que se duas retas são perpendiculares, o produto dos seus coeficientes angulares
é igual a -1.


Exemplo:

Dadas as retas de equações (2w - 2)x + (w - 1)y + w = 0 e (w - 3)y + x - 2w = 0, podemos afirmar que:


a) elas são perpendiculares para qualquer valor de w
b) elas são perpendiculares se w = 1
c) elas são perpendiculares se w = -1
d) elas são perpendiculares se w = 0
e) essas retas não podem ser perpendiculares


Solução:

Podemos escrever para a 1ª reta: y = [-(2w-2) / (w-1)].x - w /(w-1).
Analogamente para a 2ª reta: y = [-1 / (w-3)].x + 2w / (w-3). Ora, os coeficientes de x são os coeficientes angulares e, pelo que já sabemos, a condição de perpendicularidade é que o produto desses coeficientes angulares seja igual a -1. Logo:





Efetuando os cálculos indicados e simplificando-se obtemos: w2 - 2w + 1 = 0, que é equivalente a
(w - 1)2 = 0, de onde conclui-se que w = 1.


Mas, cuidado! Observe que 1 anula o denominador da expressão acima e, portanto é uma raiz estranha, já que não existe divisão por zero! Apesar das aparências, a raiz 1 não serve! Logo, a alternativa correta é a letra E e não a letra B como ficou aparente.


http://www.alunosonline.com.br/matematica/paralelismo.html 
http://www.mundoeducacao.com/matematica/interseccao-retas-concorrentes.htm 
http://deborampmatematica.blogspot.com.br/2011/08/retas-paralelas-retas-concorrentes.html


Exercícios:

Verifique o posicionamento da reta r, dada pela equação 2x + y – 1 = 0 em relação à circunferência de equação x² + y² + 6x – 8y = 0. 


Resposta 

  Questão 01.Determinar as coordenadas do centro da circunferência é a medida do raio:

x² + y² + 6x – 8y = 0
x² + 6x + y² – 8y = 0
x² + 6x →  completando o trinômio
x² + 6x + 9 = (x + 3)²
y² – 8y → completando o trinômio
y² – 8y + 16 = (y – 4)²
x² + 6x + y² – 8y = 0
x² + 6x + 9 + y² – 8y + 16 = 9 + 16
(x + 3)² + (y – 4)² = 25

A fórmula geral de uma equação da circunferência é dada por (x – a)² + (y – b)² = r², dessa forma:
Coordenadas do centro: (–3; 4)
Medida do raio: 5
Determinando a distância entre o centro e a reta
Reta r: 2x + y – 1 = 0



Temos que a distância é menor que o raio, pois 1,3 < 5. Dessa forma, a reta é secante à circunferência.


  Questão 02.Dada a reta s representada pela equação 2x – y + 1 = 0 e a circunferência de equação
x² + y² – 2x = 0, determine a posição relativa entre elas.  


Resposta 
Vamos estabelecer um sistema entre as duas equações:
Reta: 2x – y + 1 = 0
Circunferência: x² + y² – 2x = 0

Resolvendo o sistema pelo método da substituição:
Isolando y na 1ª equação:

2x – y + 1 = 0
– y = –1 – 2x
y = 1 + 2x

Substituindo y na 2ª equação:
x² + (1 + 2x)² – 2x = 0
x² + 1 + 4x + 4x² – 2x = 0
5x² + 2x + 1 = 0
∆ = b² – 4ac
∆ = 2² – 4 * 5 * 1
∆ = 4 – 20
∆ = –16

Quando ∆ < 0, a equação não possui raízes. Dessa forma o sistema não possuirá soluções. Portanto, a reta é externa à circunferência.

Questao 03.Determine o valor de w sabendo que a reta de equação x – y + w = 0 é tangente à circunferência de equação x² + y² = 9. 

Resposta 

Se a reta é tangente à circunferência, temos que a distância do centro até a reta possui a mesma medida do raio.
Em razão da equação x² + y² = 9, podemos dizer que o centro corresponde a (0; 0) e o raio igual a 3, pois x² + y² = 9 → (x + 0)² + (y + 0)² = 3².
Distância do centro (0; 0) à reta x – y + w = 0, onde a = 1, b = –1 e c = w:



Calculando w de acordo com d = r:
O valor de w é igual a + 3√2 ou –3√2.

 Questão 04.Determine o comprimento da corda determinada pela intersecção da reta r, de equação x + y – 1 = 0, com a circunferência de equação x² + y² + 2x + 2y – 3 = 0. 


Resposta


AB = medida da corda
CM = distância entre centro e reta
AM = metade da medida da corda → AB/2.

No triângulo AMC aplicaremos o teorema de Pitágoras, mas para isso precisaremos determinar a distância CM e o raio da circunferência, dado por CA.
Centro da circunferência

x² + y² + 2x + 2y – 3 = 0
x² + 2x + y² + 2y = 3
x² + 2x + 1 + y² + 2y + 1 = 3 + 1 + 1
(x + 1)² + (y + 1)² = 5
Centro (–1, –1) e raio = √5.
Reta: x + y – 1 = 0


A medida da corda AB de acordo com a situação proposta é AB = √2.


vídeo:





Nenhum comentário:

Postar um comentário